Modeling Tritium Transport Through a Deep Unsaturated Zone in an Arid Environment

C. J. Mayers,* B. J. Andraski, C. A. Cooper, S. W. Wheatcraft, D. A. Stonestrom, and R. L. Michel

ABSTRACT

Understanding transport of tritium (\(^{3}\)H) in unsaturated zones is critical to evaluating options for waste isolation. Tritium typically is a large component of low-level radioactive waste (LLRW). Studies at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Nevada investigate \(^{3}\)H transport from a closed LLRW facility. Two boreholes are 100 and 160 m from the nearest waste trench and extend to the water table at 110 m. Soil-water vapor samples from the deep boreholes show elevated levels of \(^{3}\)H at all depths. The objectives of this study were to (i) test source thermal and gas-advection mechanisms driving \(^{3}\)H transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. A two-dimensional numerical model incorporated a non-isothermal, heterogeneous domain of the unsaturated zone and instantaneous isotopic equilibrium. The TOUGH2 code was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to \(^{3}\)H. Striegl et al. (1996) attempted to explain elevated concentrations of tritiated water vapor (\(^{3}\)HHO\(_{\text{g}}\)) found throughout the unsaturated zone at a borehole 160 m from the nearest LLRW trench. They used diffusive (Smiles et al., 1995) and advective transport models to simulate an isothermal and homogeneous domain. The models were unable to match observed \(^{3}\)HHO\(_{\text{g}}\) concentrations. The diffusive model predicted \(^{3}\)H migration to a maximum distance of approximately 10 m from the source after 30 yr. An order of magnitude increase in the effective diffusion coefficient increased the maximum distance by a factor of three. The advective model used a pressure originating from the source. Striegl et al. (1996) determined a 1300 Pa source-pressure-difference sustained for 30 yr was required to move the \(^{3}\)H 100 m, but were unable to justify a source-pressure-difference >100 Pa. Ultimately, a conceptual model of lateral subsurface liquid transport from LLRW trenches was developed as a possible explanation for the observed high concentrations of \(^{3}\)H in the unsaturated zone. However, Striegl et al. (1996) stated that it was not clear how this flow could have occurred and cited previous work at the site that showed no evidence of significant liquid water movement in the subsurface. Thus, the elevated \(^{3}\)H concentrations in the deep and shallow unsaturated zone at the ADRS (Striegl et al., 1996; Healy et al., 1999) have caused speculation regarding the exact mechanisms that control \(^{3}\)H transport in arid unsaturated zones.

This study combined field data and numerical modeling to further investigate \(^{3}\)H transport in the deep unsaturated zone at the ADRS. The objectives were to (i) test source thermal and gas-advection mechanisms driving tritium transport and (ii) evaluate model sensitivity to these mechanisms and to selected physical and hydraulic properties including porosity, tortuosity, and anisotropy. Laboratory and field data allowed for conceptualization of flow processes, parameterization of the model, and evaluation of simulation results. The numerical model incorporated a non-isothermal, heterogeneous domain. The TOUGH2 code (Pruess et al., 1999) was used; however, it required modification to account for temperature dependence of both the Henry's law equilibrium constant and isotopic fractionation with respect to tritiated water.

Abbreviations: ADRS, Amargosa Desert Research Site; EOS, equation of state; \(^{3}\)H, tritium; \(^{3}\)HHO\(_{\text{g}}\), tritiated water vapor; \(^{3}\)HHO\(_{\text{l}}\), tritiated liquid water; LLRW, low-level radioactive waste; MHE, maximum horizontal extent; MVE, maximum vertical extent; \(P_{s}\), source-pressure difference above ambient; \(T_{s}\), source temperature.
Reproduced from Vadose Zone Journal. Published by Soil Science Society of America. All copyrights reserved.

Fig. 2. Low-level radioactive waste facility, chemical waste facility, and deep unsaturated zone boreholes.

1994 and April 2000, respectively; subsequent sampling occurred annually. Tritium concentrations were measured by direct liquid-scintillation counting (Thatcher et al., 1977).

**Numerical Model**

The TOUGH2 code solves a nonlinear mass balance equation for all components included in the equation of state (EOS) module and an energy-balance equation for the system. The EOS7R module allows for the following components: water, brine, radionuclide 1 “parent,” radionuclide 2 “daughter,” and air. The van Genuchten-Mualem model (van Genuchten, 1980; Mualem, 1976) was used to calculate relative permeability and capillary pressure:

\[
k_r = \Theta^{0.5}[1 - (1 - \Theta^{1/n})^{m/2}]^2
\]

\[
P_{cap} = -\frac{\rho g}{\alpha}(\Theta^{1/n} - 1)^{1-m}
\]

with

\[
\Theta = \frac{(\theta - \theta_r)}{(\theta_s - \theta_r)}
\]

and

\[
\theta = \theta_r + \frac{(\theta_s - \theta_r)}{[1 + (\psi/\alpha)^n]^{m}}
\]

where \(k_r\) is relative permeability as a function of water content; \(P_{cap}\) is capillary pressure; \(\rho\) is density of water; \(g\) is gravity; \(\Theta\) is volumetric water content; \(\Theta_s\) is residual water content; \(\Theta_r\) is saturated water content; \(\psi\) is pressure head; and \(\alpha, n, m\) are curve fitting parameters subject to \(m = 1 - n^{-1}\) and \(0 < m < 1\). The Corey (1954) gas relative permeability function used is

\[
k_{rg} = (1 - \Theta)(1 - \Theta^2)
\]

with

\[
\Theta = \frac{(\theta - \theta_r)}{(\theta_s - \theta_r)}
\]

where \(k_{rg}\) is gas relative permeability, and \(\theta_{rg}\) is residual gas content. The diffusive flux equation is

\[
f_\beta = \phi \rho \gamma_{\beta} \phi_{\beta} \nabla \nabla X_\beta
\]

where \(f_\beta\) is diffusive flux of component \(\kappa\) in phase \(\beta\) (liquid
or gas). \( \phi \) is porosity, \( \tau \) is a porous medium dependent factor of tortuosity, \( \tau_0 \) is a tortuosity coefficient dependent on phase saturation, \( \rho_p \) is phase density, \( d_0^\beta \) is diffusion coefficient of component \( \kappa \) in phase \( \beta \), and \( X_0^\kappa \) is mass fraction of component \( \kappa \) in phase \( \beta \). The Millington model (Millington, 1959) used to calculate the saturation-dependent tortuosity is

\[
\tau_0 \sigma_0 = \phi^{1/3} S_0^{0/3}
\]

where \( S_0 \) is phase saturation. The temperature and pressure dependent diffusion coefficient (Vargaftik, 1975) is

\[
d_\beta(P, T) = d_\beta(P_0, T_0) \left( \frac{T + 273.15}{273.15} \right)^0 \frac{P_0}{P}
\]

where \( P \) is pressure, \( T \) is temperature, \( P_0 = 101.325 \) Pa, \( T_0 = 0 \) °C, and \( \delta \) is the temperature dependence which is 1.8. Radioactive decay allows radionuclide 1 to decay into radionuclide 2.

\[
dM^\kappa \frac{dt}{t} = -\lambda^\kappa M^\kappa
\]

where \( M^\kappa \) is mass of radionuclide \( \kappa \) per unit volume, \( t \) is time, and \( \lambda^\kappa \) is the decay constant of radionuclide \( \kappa \).

To more accurately test \( ^3\text{H} \) transport mechanisms, the TOUGH2 code was modified to include temperature effects on both the Henry's law equilibrium constant and the isotopic fractionation factor for tritiated water:

\[
HCRN1 = \frac{1}{k_{H^3O} \alpha_{\text{H}_2\text{O}}}
\]

with

\[
k_{H^3O} = \frac{C_r}{C_{eq}} R
\]

where \( HCRN1 \) is solubility constant of \( ^3\text{HHO} \) in water, \( k_{H^3O} \) is a temperature dependent Henry's law equilibrium constant for tritiated water, \( \alpha_{\text{H}_2\text{O}} \) is a temperature dependent fractionation factor for tritiated water, \( C_r \) is concentration of \( ^{1}\text{H} \) in water vapor, \( C_{eq} \) is concentration of \( ^{1}\text{H} \) in liquid water, and \( R \) is the ideal gas constant. Fractionation values for \( ^{1}\text{H} \) were obtained from Ferronsky and Polyakov (1982).

A single source trench was used to represent the 22 trenches at the LLRW facility (Fig. 3). The total volume of the LLRW trenches is approximately \( 7.35 \times 10^8 \) m\(^3\) and the greatest trench depth is 15 m below land surface. The three western-most trenches contain approximately 90% of \( ^{1}\text{H} \) disposed at the LLRW facility (Fig. 2) (Nevada State Health Division, unpublished data, 1992). The model simulated a representative 1-m wide vertical slice of the source trench along the A–A’ transect. Projected onto the modeled slice for reference are the relative locations of the UZB-2 and UZB-3 boreholes (Fig. 3). A total \( ^{1}\text{H} \) radioactivity of approximately \( 1.27 \times 10^{10} \) Bq (Nevada State Health Division, unpublished data, 1992) and an assumed backfill and LLRW water content of 0.05 m\(^3\) m\(^{-3}\) resulted in a source-trench concentration of \( 3.46 \times 10^8 \) Bq L\(^{-1}\).

The model domain extended 585, 1, and 115 m in the \( x \), \( y \), and \( z \) directions, respectively (Fig. 4a). Due to the dimensions of the LLRW trenches and the close proximity of the area of interest to the trenches, the computational grid used Cartesian coordinates. The domain incorporated 2796 cells and the vertical grid spacing ranged from 1 to 4 m, while horizontal grid spacing ranged from 5 to 50 m. Cells close to the source trench and at lithologic contacts had a closer spacing.

Physical and hydraulic property data and other information defined a lithologic model of the site (Fig. 4b). Detailed data available for the upper 5 m of undisturbed sediments and for trench fill material (Andraski, 1996; Andraski and Jacobson, 2000) formed the basis for material properties assigned to the reference model (Table 1). Drillers’ logs, gamma logs, particle-size distribution data, air permeability data, a profile description (Fischer, 1992), and photographs of a 20-m deep hazardous waste trench were used to define sediment layers below 5 m. Textural similarities formed the basis for assignment of properties of a sediment layer in the upper 5 m to a deeper sediment layer. Three distinct sediment types defined a layered model and included gravel, sandy gravel, and silty sand with gravel. The top of the water table was defined at 110 m below land surface.

Initial conditions for the reference model were generated using a steady-state simulation. The steady-state simulation used approximations for the two boundary conditions, land surface and 5 m below the water table (Table 2). Temperatures assigned at the land surface and 5 m below the water table were projected from mean daily thermocouple psychrometer data collected for 3 yr (2000–2002) between depths of 10.9 and 103.7 m. Gas-phase pressure at the land surface was based on a 3-yr mean daily of barometric pressure (1998–2000). Gas-phase pressure 5 m below the water table was a hydrostatic value (110 m of air and 5 m of water). Gas saturation at the land surface was based on average measured water potentials (−4 MPa) under native vegetation (Andraski, 1997) and the corresponding soil–water content that was calculated using the van Genuchten (1980) retention model. These boundary conditions resulted in steady-state temperature, pressure, and water content profiles shown in Fig. 5. The steady-state water content profile generated was, on whole, comparable in shape to the observed profile, but on average was 0.06 m\(^3\) m\(^{-3}\) drier.

The transport simulation boundaries were: land surface, 5 m below the top of the water table, vertical boundary under the source trench (Fig. 4a, horizontal distance = 0 m), vertical boundary away from the source trench (Fig. 4a, horizontal distance = 585 m), and the horizontal and vertical faces of the source trench. All boundaries in the transport simulations had prescribed thermodynamic conditions except for the vertical axis of symmetry underneath the source trench, which was defined as a no flux boundary. In addition, the prescribed...
boundaries along the faces of the source trench allowed the initial 3H concentration to diminish by radioactive decay.

Overview of Model Assumptions and Numerical Simulations

All model simulations ran for 40 yr (1962–2002), which allowed comparison with field data collected from 1994 to 2002. Assumptions included instantaneous emplacement of LLRW at time \( t = 0 \) yr and instantaneous isotopic equilibrium between the gas and liquid phases. The assumption of local equilibrium between aqueous and airborne species is consistent with theory given that in beaker-scale experiments, substantive equilibrium is attained on time scales of minutes (Logan, 1996). The rate-limiting step is diffusion in the liquid phase, and pore-scale liquid dimensions are small. Failure of the local equilibration assumption would allow tritiated water vapor to move more quickly than theory predicts. Simulations used a maximum time step of 1 yr to avoid time discretization errors that occur when time steps approach the half-life of the simulated radionuclide. In addition to the reference model (described above), simulations were performed with variations in source temperature \( T_s \), source-pressure difference above ambient \( P_s \), material properties (porosity, tortuosity, anisotropic ratios of intrinsic permeability), and various combinations of \( T_s \), \( P_s \), and material properties (Table 3).

The similarities between LLRW facilities and municipal landfills formed the basis for increased temperatures and pressures in the source trench. The LLRW trenches are unlined and the final covers are monolithic; however, they contain waste similar in type to waste buried at municipal landfills that is radioactive (Crawford and Smith, 1985; Fentiman et al., 1993). The temperatures and pressures within municipal landfills increase as a function of organic biodegradation. Lack of direct measurements from the LLRW facility, temperature, and pressure values were obtained from landfill literature. Temperatures within municipal landfills range from 25 to 45°C and gas pressures range from 250 to 500 Pa above atmospheric pressure (Crawford and Smith, 1985). The \( T_s \) values tested included 35 and 45°C. The \( P_s \) values tested were 100, 250, and 500 Pa. The source trench in the reference model had an average temperature of 22°C and average pressure of 9.18 \( \times 10^3 \) Pa; temperatures and pressures based on initial conditions varied with depth. Striegl et al. (1996) did not consider biodegradation in the LLRW facility and estimated 100 Pa to be the maximum justifiable pressure difference at ADRS due to temperature and buoyancy effects. Combinations of \( T_s \) and \( P_s \) values also were tested and included simulations with a \( T_s \) of 45°C and \( P_s \) of 100, 250, and 500 Pa.

Model sensitivity to porosity was tested by setting material porosities to half the original porosity and twice the original porosity. The TOUGH2 code uses relative saturation for mass balance and flow processes, and the mass of the water present in the flow field was scaled appropriately for specified changes in porosity. In both cases, steady-state simulations were run to generate the associated initial conditions. Porosity-sensitivity testing included simulations run under reference model, \( T_s \), \( P_s \), and \( T_s \) and \( P_s \) conditions.

The saturation dependence of tortuosity is poorly under-

Table 1. Material properties of reference model.†

<table>
<thead>
<tr>
<th>Parameter‡</th>
<th>Trench fill</th>
<th>Gravel</th>
<th>Sandy gravel</th>
<th>Silty sand w/gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal intrinsic permeability ((m^2))</td>
<td>(2.96 \times 10^{-13})</td>
<td>(1.22 \times 10^{-12})</td>
<td>(3.77 \times 10^{-12})</td>
<td>(5.10 \times 10^{-13})</td>
</tr>
<tr>
<td>Vertical intrinsic permeability ((m^2))</td>
<td>(2.96 \times 10^{-13})</td>
<td>(1.22 \times 10^{-12})</td>
<td>(3.77 \times 10^{-12})</td>
<td>(5.10 \times 10^{-13})</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.252</td>
<td>0.182</td>
<td>0.122</td>
<td>0.082</td>
</tr>
<tr>
<td>Residual liquid saturation</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(k) ((\text{Pa}^{-1}))</td>
<td>(5.12 \times 10^{-4})</td>
<td>(7.15 \times 10^{-2})</td>
<td>(4.36 \times 10^{-3})</td>
<td>(3.60 \times 10^{-4})</td>
</tr>
<tr>
<td>(m)</td>
<td>0.190</td>
<td>0.155</td>
<td>0.134</td>
<td>0.227</td>
</tr>
<tr>
<td>Specific heat ((J kg^{-1} °C^{-1}))</td>
<td>967</td>
<td>864</td>
<td>930</td>
<td>790</td>
</tr>
</tbody>
</table>

† Based on Andraski (1996) and Andraski and Jacobson (2000).
‡ \(\alpha\) and \(m\) are curve fitting parameters for the van Genuchten model.
Table 2. Model parameters and reference model boundary conditions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion coefficients (25°C)</td>
<td>Gas phase</td>
</tr>
<tr>
<td>Air (m² s⁻¹)</td>
<td>2.00 × 10⁻¹⁰</td>
</tr>
<tr>
<td>Water (m² s⁻¹)</td>
<td>2.60 × 10⁻¹⁰†</td>
</tr>
<tr>
<td>Tritium half-life (yr)</td>
<td>12.35¶</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td>Top (land surface)</td>
</tr>
<tr>
<td>Gas pressure (Pa)</td>
<td>9.17 × 10⁴</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>21.8</td>
</tr>
<tr>
<td>Gas saturation</td>
<td>0.889</td>
</tr>
</tbody>
</table>

† From Cussler (1997).
‡ Calculated on the basis of kinetic gas theory, using equation 23.3.8 of Atkins (1978).
§ From Mills (1973).
¶ From Evans (1974).

The results and discussion section discusses the field data, with a focus on volumetric water content ranging from 0.05 to 0.14 m³ m⁻³ (Fig. 6a). The average water content was 0.09 m³ m⁻³ above 40 m and 0.12 m³ m⁻³ below 40 m. Low water contents at the ADNS were a result of differences in thermal vapor conductivity and liquid hydraulic conductivity of up to five orders of magnitude (Andraski and Jacobson, 2000) indicating that vapor transport is dominant in the unsaturated zone.

The concentration of 3HHOg at the two boreholes are substantially greater than background concentrations (≤3.0 Bq kg⁻¹). Concentrations of 3HHOg for 2000, 2001, and 2002 at the UZB-3 borehole range from 97 to 2704 Bq kg⁻¹ (Fig. 6b). Temporal changes in 3HHOg concentrations vary with depth. For example, the average coefficient of variation within a depth interval over time was 10% above 40 m and 29% below 40 m. High concentrations of 3HHOg at 1.5 m coincide with a coarse gravel layer.

Table 3. Summary of simulations.

<table>
<thead>
<tr>
<th>Source</th>
<th>Source temperature</th>
<th>Source-pressure difference</th>
<th>Source temperature and source-pressure difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>35°C</td>
<td>45°C</td>
<td>100 Pa</td>
</tr>
<tr>
<td>Original code</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified code†</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity × 0.5</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity × 2.0</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortuosity 0.66</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortuosity 0.99</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisotropy 1 to 10</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisotropy 1 to 100</td>
<td>x x x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† The TOUGH2 code was modified to account for temperature effects on both the Henry's law equilibrium constant for tritium and the isotopic fractionation factor for tritiated water.
A large “diffusive-shaped” bulge from 5 to 35 m consists of a cluster of high concentration depth intervals with a maximum $^3$H concentration of 1113 Bq kg$^{-1}$ at a depth of 23.8 m. The bulge crosses several layers of gravel and sandy gravel. Concentrations of $^3$H for 1994, 1998, and 2002 at the UZB-2 borehole ranged from 16 to 1729 Bq kg$^{-1}$ (Fig. 6c). The average coefficient of variation within a depth interval over time was 37% above 40 m and 85% below 40 m. High concentrations of $^3$H at 1.5 and 47.9 m coincide with coarse gravel layers in the unsaturated zone. The tritiated liquid water ($^3$HOO$^-$) concentration of a groundwater sample from UZB-2 in September 1993 was below detection (<0.36 Bq kg$^{-1}$ of water in the liquid phase). A groundwater sample collected from UZB-3 in March 2000 had a $^3$HOO$^-$ concentration of 0.45 Bq kg$^{-1}$ of water in the liquid phase.

The UZB-3 and UZB-2 $^3$HOO$^-$ profiles are similar in the shallow subsurface and differ at depth. Localized surface spills and the LLRW trenches may constitute two different sources of $^3$HOO$^-$. A near-surface spill may be the cause of concentration peaks at 1.5 m in both profiles (Andraski et al., 2005). The difference in $^1$H distributions at depth for the two profiles indicates two different paths from the LLRW trenches may exist. The close proximity to the 15-m deep trenches may explain the diffusive profile present at UZB-3. A vertical transport path beneath the LLRW facility and then lateral transport through the thick, coarse gravel layer at 50 m may explain the deep UZB-2 profile.

## Model Results

### Reference Model Simulation Results

The reference model incorporated steady-state conditions previously generated assuming no waste. Initially all $^1$H was assigned to the source trench. The extent of simulated transport was evaluated based on the maximum distance that the leading edge of the $^3$HOO$^-$ plume (defined as 1 Bq kg$^{-1}$ of water in the gas phase) traveled from the horizontal and vertical faces of the source trench. At time $t = 40$ yr, the reference model simulated $^3$HOO$^-$ migration to a maximum horizontal extent (MHE) of 27 m from the vertical face of the source trench and a maximum vertical extent (MVE) of 18 m from the bottom of the source trench.

The extent and overall shape of the reference model $^3$HOO$^-$ transport did not match the field data (Fig. 7 and Fig. 6b and 6c, respectively). Compared with the 30-yr model results of Striegl et al. (1996), the reference model increased the horizontal and vertical extents by about 17 and 8 m at time $t = 30$ yr, respectively. Discrepancies between the two model results possibly are because of differences in steady-state water saturations and because a more complex model was used that accounts for temperature effects on the Henry's law equilibrium constant and the isotopic fractionation factor with respect to tritiated water.

Tritium migrated by diffusion in both the liquid and gas phases. Gas-phase diffusion of $^3$H dominated due to the low water content of sediments. The average effective-vapor-phase diffusivity ($1.9 \times 10^{-2}$ m$^2$ s$^{-1}$) was six orders of magnitude larger than the average effective-liquid-
Fig. 8. Summary of simulated tritium (H) transport as tritiated water vapor (³H⁺HO₂) in units of Bq kg⁻¹ showing the effects of source temperature (Tₛ), source-pressure difference above ambient (Pₛ), and anisotropy on the maximum horizontal extent (MHE) from the vertical face of the source trench and the maximum vertical extent (MVE) from the bottom of the source trench at time = 40 yr. The leading edge of the plume was defined as the concentration of ³H⁺HO₂ = 1 Bq kg⁻¹ of water in the gas phase.

All of the isotropic, increased Pₛ (100, 250, and 500 Pa) simulations enhanced the migration of ³H⁺HO₂ (Fig. 8). However, the Pₛ values tested were insufficient to enable ³H⁺HO₂ to reach either borehole. The pressure effect was greater in the horizontal direction due to the greater permeability of the gravel layers in contact with the vertical edge of the source trench, which in turn increased gas velocities in these layers. The pressure gradients generated for the three isotropic Pₛ simulations (not shown) were steepest in the horizontal direction away from the source trench due to the close proximity of the land surface boundary condition. Gas velocities in the horizontal direction (averaged over a distance of 15 m) ranged from 2.8 × 10⁻⁶ to 1.0 × 10⁻⁵ m s⁻¹. In contrast, gas velocities in the vertical direction (averaged over a distance of 15 m) ranged from 1.0 × 10⁻⁶ to 5.3 × 10⁻⁶ m s⁻¹.

All of the isotropic, increased Tₛ-and-Pₛ combination simulations enhanced the migration of ³H⁺HO₂ (Fig. 8). However, the Tₛ-and-Pₛ combinations tested were insufficient to enable ³H⁺HO₂ to reach either borehole. The combined effects of Tₛ and Pₛ were additive, yielding a ³H⁺HO₂ field that extended further in the horizontal direction than in the vertical direction. The Tₛ component affected both the horizontal and vertical transport of ³H⁺HO₂, whereas the Pₛ component primarily affected the horizontal transport of ³H⁺HO₂.

To further evaluate the code modification (Eq. [11] and Eq. [12]), all of the aforementioned simulations were run without the code modification. Results showed the code modifications substantially affected all isotropic simulations that incorporated an increased Tₛ. For example, average MHE and MVE increases of 12 and 24%, respectively, were realized in modified code simulations with an increased Tₛ. In contrast, in simulations...
without an increased $T_s$, the modified code yielded average MHE and MVE increases of 1 and 1\%, respectively.

The porosity simulations yielded little change in the MHE and MVE of the $^3$HHO$_g$ field generated (not shown). One effect of changing the porosity was in the temperature field, which resulted in a small concomitant change in the $^3$HHO$_g$ field. Changing the porosity did not affect the ratio of gas and liquid in the pores; however, the relative soil solid to pore volume did change which resulted in an altered temperature field. Another effect of changing the porosity was the change in the liquid water available for $^3$H exchange. An increase in water content resulted in more $^3$H partitioning into the liquid water and a diminished rate of $^3$HHO$_g$ transport. The porosity factor of 0.5 and 2 simulations generated $^3$HHO$_g$ fields that were within 6 and 4 m of their unadjusted counterparts, respectively.

All of the tortuosity simulations based on the relative permeability model slightly increased the MHE and MVE of $^3$HHO$_g$ migration when compared to the Millington (1959) tortuosity model (not shown). This occurred because the relative permeability model used a tortuosity factor of 0.66 or 0.99, whereas the Millington (1959) model resulted tortuosity factors that ranged from 0.57 to 0.69 with an average tortuosity factor of 0.61 (upper 30 m of the unsaturated zone). However, even with a tortuosity factor of 0.99 the enhancement was small. The simulations using a tortuosity factor of 0.66 and 0.99 resulted in increased maximum extents of the $^3$HHO$_g$ fields up to 2 and 6 m of their unadjusted counterparts, respectively. The relatively small effect of tortuosity appears to be due to the dominant effect of instantaneous isotopic equilibrium on the extent of $^3$H migration.

The anisotropic simulations increased the MHE and MVE of the $^3$HHO$_g$ migration (Fig. 8). The anisotropic MHE increased by as much as 86 m, whereas the largest MVE increase was 3 m when compared to isotropic counterparts at time = 40 yr. Changing the intrinsic permeabilities affected the simulated pressure fields and enhanced $^3$HHO$_g$ transport in the horizontal direction, but did not affect the simulated temperature fields. Changes in $T_s$ did influence the anisotropic simulations with increased temperature fields leading to a preferential migration of $^3$HHO$_g$ in the vertical vs. horizontal direction. Two of the 1:100 anisotropic simulations [$P_s$ 500 Pa; $T_s$ 45°C and $P_s$ 500 Pa combination (Fig. 8)] allowed the $^3$HHO$_g$ to migrate a horizontal distance equivalent to that necessary to reach the UZB-3 borehole. Although the simulated $^3$HHO$_g$ plumes extended past UZB-3, the simulated concentrations were a fraction of the measured concentrations shown in Fig. 6b.

An additional simulation was completed to evaluate the effect of radioactive decay on the maximum extent of the $^3$HHO$_g$ transport. The simulation was anisotropic (1:100), $T_s$ 45°C, $P_s$ 500 Pa and $^3$H was not allowed to decay. The $^3$HHO$_g$ field generated at time = 40 yr (not shown) had a MHE of 123 m and a MVE of 31 m; these values were only slightly greater ($<2$ m) than those for the same simulation that allowed $^3$H to decay. Thus, radioactive decay was not a limiting factor in the transport of $^3$HHO$_g$.

**Representative “Shape” of Simulated $^3$HHO$_g$ Fields**

Results of selected simulations shown in Fig. 9 illustrate variations in the “shape” of the simulated $^3$HHO$_g$ fields. The shape of the $^3$HHO$_g$ field for the $T_s$ 45°C simulation (Fig. 9a) reflects diffusive transport enhanced by $T_s$. Relative to the reference model simulation (Fig. 7), the MHE and MVE of the $^3$HHO$_g$ field increased 5 and 6 m at time = 40 yr, respectively. The shape of the $^3$HHO$_g$ field for the $P_s$ 500 Pa simulation (Fig. 9b) was similar to that for the $T_s$ 45°C simulation (Fig. 9a), but the MVE was smaller. Relative to the reference model, the MHE and MVE of the $^3$HHO$_g$ field increased 12 and 3 m at time = 40 yr, respectively. The combined effects of $T_s$ and $P_s$ for the isotropic $T_s$ 45°C and $P_s$ 500 Pa simulation were additive (Fig. 9c). Relative to the reference model, the MHE and MVE of the $^3$HHO$_g$ field increased 15 and 9 m at time = 40 yr, respectively. The simulated $^3$HHO$_g$ fields shown in Fig. 9a, Fig. 9b, and Fig. 9c not only failed to transport $^3$HHO$_g$ to the UZB-3 and UZB-2 boreholes, but did not resemble the measured profile at either UZB-3 or UZB-2 (Fig. 6b and Fig. 6c, respectively).

The $^3$HHO$_g$ field generated for the anisotropic (1:100) $T_s$ 45°C and $P_s$ 500 Pa simulation (Fig. 9d) resembled the upper portion of the UZB-3 $^3$HHO$_g$ profile (Fig. 6b). Relative to the reference model, the MHE and MVE of the $^3$HHO$_g$ field increased 94 and 13 m at time = 40 yr, respectively. Increasing the horizontal intrinsic permeability resulted in greater $^3$HHO$_g$ transport in the horizontal direction. The anisotropy allowed the pressure imposed at the source trench to escape laterally instead of creating an increased vertical pressure gradient beneath the source trench. This preferential flow enabled $^3$HHO$_g$ to migrate further away from the source trench. All of the anisotropic simulations generated $^3$HHO$_g$ fields that resembled the near surface profiles measured at the UZB-3 $^3$HHO$_g$ borehole (Fig. 6b). The simulations showed increased $^3$HHO$_g$ concentrations between land surface and a depth of 46 m, with a peak concentration at approximately 18 m. In contrast with the field data (Fig. 6b and Fig. 6c); however, none of the simulated $^3$HHO$_g$ fields showed vertical migration of $^3$HHO$_g$ below 46 m.

**CONCLUSIONS**

Field data for water content and concentrations of tritiated water vapor ($^3$HHO$_g$) in the 100-m deep unsaturated zone indicate that $^3$H movement primarily occurs in the gas phase with preferential transport through coarse-textured sediment layers. The UZB-3 and UZB-2 borehole profiles have the highest concentrations at a 1.5-m depth that correspond with a dry, coarse-gravel layer. At depth, the shapes of the two profiles differ considerably. The high $^3$HHO$_g$ concentrations at UZB-3 (100 m from the nearest LLRW trench) are seen as a bulge between 5 and 35 m. The bulge crosses several
layers of sandy gravel and gravel. In contrast, the high $^3$H$\text{HO}_2$ concentration at UZB-2 (160 m from the nearest LLRW trench) is present at a single sampling depth, 47.9 m, which is within an individual gravel layer.

All isotropic simulations were insufficient to transport $^3$H$\text{HO}_2$ to distances that would reach one or both of the boreholes. The inability to transport $^3$H$\text{HO}_2$ resulted from a decreasing concentration gradient because of instantaneous isotopic equilibrium between the liquid and vapor phases. In the reference model simulation, the dominant transport mechanism was diffusion in the gas phase. Code modification incorporating the temperature dependence of both the Henry’s law equilibrium constant and fractionation with respect to tritiated water was important in realizing the effects of increased TS. All of the elevated TS simulations enhanced the migration of $^3$H$\text{HO}_2$ because the increased temperature field allowed more $^3$H to partition into $^3$H$\text{HO}_2$. All of the increased source-pressure-difference ($P_\text{s}$) simulations enhanced the migration of $^3$H$\text{HO}_2$. The enhancement was greater in the horizontal direction because of the contact between the source trench and the near surface gravel layers. The combined effects of TS and $P_\text{s}$ were additive, yielding a $^3$H$\text{HO}_2$ field that extended further in the horizontal direction than in the vertical direction. The temperature component affected both the horizontal and vertical transport of $^3$H$\text{HO}_2$, whereas the pressure component primarily affected the horizontal transport of $^3$H$\text{HO}_2$. Changes in porosity and tortuosity had little affect on transport of $^3$H$\text{HO}_2$.

The anisotropic simulations showed the greatest enhancement of $^3$H$\text{HO}_2$ transport. The horizontal component increased substantially (5–86 m) whereas the vertical component increased only slightly (0–3 m) when compared to the equivalent isotropic simulations. All of the anisotropic simulations with a $P_\text{s}$ component generated $^3$H$\text{HO}_2$ fields that resembled the upper portion (5–50 m) of the measured UZB-3 $^3$H$\text{HO}_2$ profile. Simulation results indicated that a high degree of anisotropy (1:100) in conjunction with a $P_\text{s}$ component of 500 Pa was necessary for $^3$H$\text{HO}_2$ to reach the UZB-3 borehole.

None of the simulations in this study were able to reproduce observed $^3$H$\text{HO}_2$ profiles. Simulations showed that radioactive decay did not limit the migration of $^3$H$\text{HO}_2$. However, isotopic equilibrium in which liquid water in the soil matrix acted as a large sink for the $^3$H$\text{HO}_2$ appeared to be a major limiting factor in the migration of $^3$H$\text{HO}_2$. The failure to match simulated $^3$H profiles to measured profiles is likely due to insufficiencies in the conceptual model. A process that has not yet been accounted for may be driving $^3$H transport in the deep unsaturated zone. Possible mechanisms driving $^3$H transport that need to be explored include coupled transport of $^3$H and volatile organic compounds and the effects of barometric pumping. Additional fieldwork is also needed to better quantify permeabilities and anisotropy.

**ACKNOWLEDGMENTS**

The authors gratefully acknowledge the Nevada State Health Division for providing unpublished data; M.J. Johnson for his assistance in sample collection; D.E. Prudic for helpful discussions; and M.L. Strobel, K.J. Halford, J.R. Nimmo, E.P. Weeks, and anonymous reviewers for helpful comments on the manuscript.
REFERENCES


